Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simplifying the Evaluation of Graphene Modified Electrode Performance Using Rotating Disk Electrode Voltammetry

Identifieur interne : 000413 ( Chine/Analysis ); précédent : 000412; suivant : 000414

Simplifying the Evaluation of Graphene Modified Electrode Performance Using Rotating Disk Electrode Voltammetry

Auteurs : RBID : Pascal:12-0178388

Descripteurs français

English descriptors

Abstract

Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH3)6]3+/2+ and [Fe(CN)6]3-/4- and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0178388

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simplifying the Evaluation of Graphene Modified Electrode Performance Using Rotating Disk Electrode Voltammetry</title>
<author>
<name sortKey="Guo, Si Xuan" uniqKey="Guo S">Si-Xuan Guo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemistry, Monash University</s1>
<s2>Clayton, Vic 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, Vic 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Shu Feng" uniqKey="Zhao S">Shu-Feng Zhao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemistry, Monash University</s1>
<s2>Clayton, Vic 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, Vic 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University</s1>
<s2>Shanghai 200062</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200062</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bond, Alan M" uniqKey="Bond A">Alan M. Bond</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemistry, Monash University</s1>
<s2>Clayton, Vic 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, Vic 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemistry, Monash University</s1>
<s2>Clayton, Vic 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, Vic 3800</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0178388</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0178388 INIST</idno>
<idno type="RBID">Pascal:12-0178388</idno>
<idno type="wicri:Area/Main/Corpus">001F33</idno>
<idno type="wicri:Area/Main/Repository">001559</idno>
<idno type="wicri:Area/Chine/Extraction">000413</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids</term>
<term>Ammonia</term>
<term>Aqueous solution</term>
<term>Carbon</term>
<term>Carbon nanotubes</term>
<term>Confinement</term>
<term>Convection</term>
<term>Cyclic voltammetry</term>
<term>Data analysis</term>
<term>Diffusion</term>
<term>Electrochemistry</term>
<term>Electrodeposition</term>
<term>Environment</term>
<term>Hydroquinone</term>
<term>Indium</term>
<term>Oxidation</term>
<term>Rotating disk electrode</term>
<term>Simulation</term>
<term>Steady state</term>
<term>Substrate</term>
<term>Tin oxide</term>
<term>Transients</term>
<term>Transport</term>
<term>Voltammetry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electrode disque tournant</term>
<term>Voltammétrie</term>
<term>Dépôt électrolytique</term>
<term>Solution aqueuse</term>
<term>Oxyde d'étain</term>
<term>Carbone</term>
<term>Indium</term>
<term>Substrat</term>
<term>Electrochimie</term>
<term>Ammoniac</term>
<term>Hydroquinone</term>
<term>Acide</term>
<term>Oxydation</term>
<term>Phénomène transitoire</term>
<term>Voltammétrie cyclique</term>
<term>Régime permanent</term>
<term>Simulation</term>
<term>Confinement</term>
<term>Transport</term>
<term>Diffusion</term>
<term>Convection</term>
<term>Nanotube carbone</term>
<term>Analyse donnée</term>
<term>Environnement</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
<term>Acide</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH
<sub>3</sub>
)
<sub>6</sub>
]
<sup>3+/2+</sup>
and [Fe(CN)
<sub>6</sub>
]
<sup>3-/4-</sup>
and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simplifying the Evaluation of Graphene Modified Electrode Performance Using Rotating Disk Electrode Voltammetry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUO (Si-Xuan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHAO (Shu-Feng)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOND (Alan M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIE ZHANG</s1>
</fA11>
<fA14 i1="01">
<s1>School of Chemistry, Monash University</s1>
<s2>Clayton, Vic 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University</s1>
<s2>Shanghai 200062</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>5275-5285</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000509744360450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0178388</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH
<sub>3</sub>
)
<sub>6</sub>
]
<sup>3+/2+</sup>
and [Fe(CN)
<sub>6</sub>
]
<sup>3-/4-</sup>
and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electrode disque tournant</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Rotating disk electrode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electrodo disco giratorio</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Voltammétrie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Voltammetry</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Voltametría</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electrodeposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Depósito electrolítico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Carbono</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Substrat</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Substrate</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Substrato</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Electrochimie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrochemistry</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Electroquímica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ammoniac</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ammonia</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Amoníaco</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Hydroquinone</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hydroquinone</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hidroquinone</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Acide</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Acids</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Acido</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Transients</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fenómeno transitorio</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Régime permanent</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Steady state</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Régimen permanente</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Simulation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Simulation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Simulación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Confinement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Confinement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Confinamiento</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Transport</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Transport</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Transporte</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Diffusion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Diffusion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Difusión</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Convection</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Convection</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Convección</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Nanotube carbone</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Carbon nanotubes</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Analyse donnée</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Data analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Análisis datos</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Environnement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Environment</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Medio ambiente</s0>
<s5>24</s5>
</fC03>
<fN21>
<s1>135</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0178388
   |texte=   Simplifying the Evaluation of Graphene Modified Electrode Performance Using Rotating Disk Electrode Voltammetry
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024